

Combined Numeric Nutrient Criteria

Goal: Present an optional approach to nutrient criteria development that combines multiple nutrient-related thresholds into a single criterion

Outline

- Introduce the concept of combined criteria
- Present EPA's current Guiding Principles
- Provide illustrative examples

Approaches for Addressing Variability in Relationships

Classification

Deriving a Protective Criterion

Nutrient concentration

Independent Application

All criteria have traditionally been applied independently.

- Waterbodies are subject to multiple nutrient criteria.
- Exceeding any one water quality standard means that a waterbody must be listed as "impaired."

	Nutrients ≤	Nutrients >
Chlorophyll-a ≤	Not impaired	Impaired
Chlorophyll-a >	Impaired	Impaired

Independent Application: A Graphical Depiction

Nutrient concentration

A Less Idealized Example

Nutrient concentration

Combined Criteria

- Combines multiple nutrient-related thresholds into a single assessment decision (e.g., total nitrogen/phosphorus, chlorophyll-a), which increases assessment accuracy.
 - Exceedance of a suite of causes and responses might be more reliably associated with a high risk of losing a designated use.
- Main considerations:
 - Must protect applicable uses
 - Must be scientifically defensible

Engagement With States

October 2011 – the EPA/state co-regulator workshop was held to discuss novel approaches to criteria development in order to meet the following criteria goals:

- Meet states' assessment and listing goals
- Protect designated uses and downstream waters
- Remain scientifically defensible

April 2013 – the EPA expert workshop on *Nutrient Indicators in Streams* had a goal to gain scientific insight to identify the following:

- Nutrient pollution indicators that are both sensitive to nutrient stress and predictive of impacts to higher trophic levels
- Combined criteria approaches that protect aquatic life in streams

April 2013 – the EPA expert workshop, *Nutrient Indicators in Streams* identified the following indicators that are most sensitive and predictive:

- Total nitrogen and phosphorus concentrations
- Algal biomass and algal assemblage
- Dissolved oxygen and pH

April 2013 – the EPA expert workshop on *Nutrient Indicators in Streams* identified a range approach as one scientifically defensible approach. A range approach:

- Establishes upper and lower nutrient levels indicating nonattainment and attainment
- Applies a decision framework of response information within the range of nutrient concentrations

April 2013 – the EPA expert workshop on *Nutrient Indicators in Streams* identified the following:

- Any adverse response should be sufficient to indicate nonattainment.
- Proper classification is fundamental to reducing variability in nutrient responses.
- Sufficient data is important for criteria development and assessment.

Guiding Principles

September 2013 – the Guiding Principles were released to provide a framework for states currently pursuing or considering a combined approach for developing and implementing numeric nutrient criteria that:

- Protect the designated use
 - Exceedance of criteria triggers action prior to actual impairment of the designated use
- Protect downstream waters
 - Ensures attainment and maintenance of water quality standards downstream
- Include numeric nutrient targets
 - Facilitates permitting and total maximum daily loads
- Are scientifically defensible

Guiding Principles

- The Guiding Principles contain the following parameters that are sensitive to nutrient stress and predictive of impacts to designated uses:
 - Total nitrogen and phosphorus measures
 - Algal component, including primary production and algal assemblage measures
 - Ecosystem function component
- States are encouraged to include additional endpoints where appropriate.
 - Higher trophic level endpoints should not be the predominant or sole components.

Guiding Principles

- Demonstrate criteria component sensitivity to nutrient pollution and a linkage to designated uses.
- Define the desired ambient condition and level of protection for the waterbody.
- Express the criterion in a way that integrates causal and response parameters and allows for a transparent and reproducible assessment decision.

Expressing a Protective CombinedCriterion: Examples

- Simple matrix
- Range approach

Simple Matrix

Considers a water "impaired" if causal AND any response parameter are exceeded.

	Nutrients ≤	Nutrients >
All response ≤	Not impaired	Not impaired*
Any response >	Impaired (cause not determined)	Impaired

^{*}Site might be candidate for site-specific criteria.

Range Approach

If causal parameters are within range, response parameters are required to assess attainment.

Nutrient concentration

	Nutrients < lower range	Nutrients in range	Nutrients > upper range
All response ≤	Not impaired for nutrients	Not impaired for nutrients	Impaired for nutrients
Any response >	Not impaired for nutrients*	Impaired for nutrients	Impaired for nutrients

^{*}Site impaired for biological response condition, cause unknown.

United States Environmental Protection Agency

Lessons Learned

- Combined criteria provide states with flexibility within the context of quantifiable variability.
 - Combining causal and response variables requires knowing both well and having numeric thresholds for both.
 - Focus on a set of sensitive responses (e.g., algal assemblage, primary productivity).
 - Criteria must protect applicable uses.
- Focus on clear decision frameworks that are transparent and reproducible.